Original article:

MRI versus clinical examination in diagnosing meniscal and ligamentous injuries of knee

Rakesh Gujjar*(Corresponding author), R. P. Bansal, L. K. Gothecha, Sandeep Rao

Department of Radio-diagnosis and imaging, NIMS Hospital and College, Jaipur

Abstract

Objective: The purpose of this study was to correlate clinical and MRI findings in diagnosing ligament and meniscus tears in knee joint injuries.

Material and methods: 30 cases with history of rotational injury having knee pain and recurrent swelling who were referred to Radiology Department for MRI of knee joint following injury to the knee with an age ranging from 11 to 60 years were subjected to this study. Prior to MRI, a detailed history, clinical, and local examination were done in all the subjects. MRI was carried out on .35 Tesla Siemens Magnetom C machine using specific knee coil. and the standard protocol consisted of fat-suppressed PD in axial, sagittal, and coronal planes, T2W in axial, and sagittal plane and T1W in axial, and sagittal plane.

Results: MRI had 100% sensitivity and negative predictive value (NPV) in diagnosing ACL tears in this study. Clinical examination had sensitivity of 88% and NPV 75% in diagnosing ACL injuries as compared to arthroscopy. There was high NPV of MR examination (96%) in diagnosing meniscus tear while the PPV of MR examination was low (71%) as compared to arthroscopy. These values were low in case of clinical examination.

Conclusion: Magnetic resonance imaging is useful as a preoperative diagnostic tool in selected cases where a clinical examination cannot be performed as in acute injuries or in cases where clinical examination is inconclusive. The efficacy of MRI in diagnosing a tear varies among different intra articular structures. MRI has a high accuracy in diagnosing a tear of PCL. Sensitivity for medial meniscal tear is higher as compared to lateral meniscus and high for PCL as compared to ACL. MRI has a high positive predictive value for ACL, but has a low negative predictive value. For PCL tears, MRI has a high negative predictive value which indicates that with a negative result for PCL on MRI, a diagnostic arthroscopy can be avoided.

Key words: MRI Knee, Clinical examination, Knee injuries, Meniscal injuries, Ligamentous injuries.

Introduction

Approximately 28% of patients present in orthopaedic outdoor patient department (OPD) with complaints of knee pain [1]. The cause ranges from trauma, degenerative joint conditions, infections, inflammatory conditions, and congenital lesions [2]. In the diagnosis of the lesion in the knee, the surgeon has to obtain a thorough clinical history, examine the patient, and do investigations as may be required. Knee injuries represent roughly y 6% of all acute injuries treated at emergency department and between 27% and 48% of these have been reported to be sports related [3]. The commonly missed diagnosed injuries around knee joints are osteochondral fractures, partial anterior cruciate ligament (ACL) tears, and loose bodies [4]. Failure to recognize these has both medical and socioeconomic complications. The common medical complications include an unstable knee, chronic knee pain, and post traumatic arthritis [5, 6]. The socioeconomic complications include loss of working hours during the treatment, high cost of medical care for procedures such as total knee arthroplasties and a perception of general poor health [7]. Moreover, the ligaments of knee are divided into intra-articular and extra-articular; consequently, MRI plays a most important role in their evaluation. This division is important as the extra-articular ligaments are not visible on routine arthroscopic procedures [8].

Material and methods

The ethical committee of our institute approved this prospective study. Informed consent was taken from all patients undergoing this study. We prospectively studied 30 patients in the age ranges from 11 to 60 years over a period of 14 months starting from April 2014. All patients of knee injury who underwent MR imaging were included in the study. Patients excluded from the study were those

• Patients with metallic implants and those are claustrophobic.

• Prior arthroscopy or surgical intervention.

• Known joint disease like neoplasm, inflammatory or infectious disorder.

• Patients who haven't given consent for the study.

Findings of specific local examination of injured knee were recorded in detail and a clinical diagnosis was established in all the cases. Screening X-rays were documented for evidence of bony injury. MR examination was done on all the patients and findings were documented. Initial clinical evaluation included general physical examination, palpation for patellar crepitus, patellar mal tracking and specific tests for intra-articular lesions – McMurry's test. Appley's grinding test, Squat test, and drawer tests. The results of MRI were compared with clinical examination.

MRI technique

MR scan in all the patients included in this study was carried out on Siemens Magnetom C 0.3 Tesla MR Machine. MRI: performed machine using specific knee coil. Following sequences were obtained : T1 : axial & sagittal, T2: Axial & sagittal and PDFS (Proton density fat saturation): Axial, coronal & sagittal.

The slice thicknesses of 4 mm with 1mm gap and matrix size of 256 x256 were the scan parameters.

Results

MRI had 100% sensitivity and negative predictive value (NPV) in diagnosing ACL tears in this study. Clinical examination had sensitivity of 88% and NPV 75% in diagnosing ACL injuries as compared to arthroscopy. There was high NPV of MR examination (96%) in diagnosing meniscus tear while the PPV of MR examination was low (71%) as compared to arthroscopy. These values were low in case of clinical examination.

Discussion

Currently MRI is gaining popularity as a diagnostic tool in knee injuries due to increasing sports injuries, and road traffic accidents.

The single most common indication of performing a knee MRI is to diagnose internal derangements in an injured knee.

Clinical examination may be difficult in acute injury and is inconclusive in cases with injuries of multiple ligaments/menisci.

In our study, in case of meniscus tears, MR had sensitivity of 91% and NPV o of 96%. These values were low in case of clinical examination, 66% and 86%, respectively. There was not much difference in specificity and positive predictive value (PPV) of MR and clinical examination in case of meniscus tears.

Sensitivity and NPV of MR examination were very high in diagnosing ACL tears. MR had 100% sensitivity and NPV of diagnosing ACL tears in this study. Clinical examination had sensitivity of 88% and NPV of 75% in diagnosing ACL injuries. Specificity and PPV were relatively low for MR as compared to clinical examination in diagnosing ACL tears. MR had specificity of 50% and PPV of 89% while clinical examination had specificity and PPV of 100%.

Diagnostic accuracy was 90% in diagnosing ACL tears for both clinical and MR examination while MR had marginally higher diagnostic accuracy in case of meniscus tears.

The criterion to diagnose meniscus tear was hyper intense signal extending to the articular surface (Grade III signal) on PPD and STIR sequences.

Other findings in our study were a full-thickness longitudinal tear leading to the development of bucket handle tear. In a bucket handle tear, the inner fragment becomes displaced either centrally giving "fragment in notch" sign or "double PCL" sign or anteriorly giving "large anterior horn" or "Flipped Fragment" sign, Partial tear of PCL leading to its buckling, Complete tear of ACL seen as disruption of fibres with hyper intense signal.

Magnetic resonance imaging is useful as a diagnostic tool in internal derangements of the knee. It is useful in circumstances where there is a need for detailed differentia diagnosis. It is also an important diagnostic tool in cases of acute and painful knees, where clinical examination is difficult to perform.

Rubin, et al. [9] reported 93% % sensitivity for diagnosing isolated ACL tears. Similarly, several prospective studies have shown a sensitivity of 92 - 100% and a specificity of 93 - 100% for the MR Imaging diagnosis of ACL tears [10, 11, 12].

The sensitivity for diagnosing isolated medial meniscal tears in Rubin's series s was 98% and it decreased when other structures were also injured. The specificity in isolated lesion was 90%. In a multi centric analysis, Fisher [12] reported an accuracy of 78-97% for the anterior cruciate ligament and 64-95% for medial meniscal tears.

Barronian et al. [13] in their study of 22 patients showed results similar to ours. They calculated PPV and NPV of MR examination and concluded that the NPV was 92% for cruciate ligaments, whereas the PPV was 50%. (i.e., a negative MRI was more accurate). The high NPV is important and indicates that a negative MRI is quite reliable for cruciate ligaments.

The accuracy of the clinical diagnosis of meniscus tears is about 75-80% compared with 88-90% for MRI [14].

A further improvement in the techniques and increasing experience in interpretation of the images is likely to reduce the false positive and false negative results in future. Magnetic resonance imaging also helps the surgeon to plan the definitive management of a tear during the same session.

Conclusion

Magnetic resonance imaging is useful as a preoperative diagnostic tool in selected cases where a clinical examination cannot be performed as in acute injuries or in cases where clinical examination is inconclusive. The efficacy of MRI in diagnosing a tear varies among different intra articular structures. MRI has a high accuracy in diagnosing a tear of PCL. Sensitivity for medial meniscal tear is higher as compared to lateral meniscus and high for PCL as compared to ACL. MRI has a high positive predictive value for ACL, but has a low negative predictive value. For PCL tears, MRI has a high negative predictive value which indicates that with a negative result for PCL on MRI, a diagnostic arthroscopy can b be avoided.

References

1. Peat G, McCarney RR, Croft P. Knee pain and osteoarthritis in older adults: A review of community burden and current use of primary health care. An Rheum Dis, 2001; 60 0: 91-7.

2. Calmbach WL, Hutc chens M. Evaluation of patients present ting with knee pain: Part II. Differential Diagnosis. Am Fam Phys, 2003; 68: 917--22.

3. Frobell RB, Lohma ander LS, Roos HP. Acute rotational trauma to the knee: Poor agreement between clinical assessment and magnetic resonance imaging findings. Sca and J Med Sci Sports, 2007; 17: 109-14.

4. Yoon YS, Rah JH, Park H HJ. A prospective study of the accuracy of clinical examination evaluated by arthroscopy of the knee. Int Orthop , 2004; 21: 2237.

5. McDaniel W, Dameronn T. Untreated ruptures of the anterior cruciate ligament. A follow-up study. J Bone Joint Surg Am, 1980; 62: 696-705.

6. Jomha NM, Borton DC, Clingeleffer AJ, Pinczewski LA. Long-term osteoarthritic changes in anterior cruciate ligament reconstructed knees. Clin Orthop, 1999; 358: 188-93.

7. Oreilly SC, Muir KR, DDoherty M. Knee pain and disability in the Nottingham community: Associatio on with poor health status and psychological distress. Br J Rheumatol, 1998; 377: 870-3.

8. McNally EG. Knee: Ligaments: In: Vanhoenacker FM, Maaas M, Gielen JL, editors. Imaging of Orthopedic Sports Injuries. Springer, 2007, p. 284-303

9. Rubin DA, Kettering JJM, Towers JD, Britton CA, MR Imaging g of knee having isolated and combined l ligament injuries. AJR, 1998; 170: 1207-12 213.

10. Lee JK, Yao L, Ph helps CT, Wirth CR, Czajka J, Lozman J. Anterior cruciate ligament tears. MR R Imaging compared with arthroscopy and clinical tests. Radiology, 1998; 166 6: 861-864.

11. Mink JH, Levy T, Crues JV III. Tears of the anterior cruciate ligament and menisci of the knee. MR Imaging evaluation. Radiology, 1988; 167 7: 769-774.

12. Fisher SP, Fox JJM, Friedmann MJ, Synder Accuracy of diagnosis resonance imaging of multicentric analysis of and fourteen patients. Surg., 1991; 73-A: 2--10. Del Pizzo W, SJ, Ferkel RD. from magnetic the knee; a one thousand J. Bone Joint

13. Barronian AD, Zolttan JD, Bucon KA. Magnetic resonance imaging of the knee: Correlation with arthroscopy. Arthroscopy, 1989; 5 5: 187-91.

14. MacKenzie R, Palmer CR, Lomas DJ, Dixon AK. Magnetic c resonance imaging of the knee: Diagnostic performance studies. Clin Radiol, 11996; 51: 251-7.